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Definitions and Notations

�X = (X
1
,X

2
,...,X

q
): a random vector

�                       , where
� Typical problems

� Estimation of the mean vector and the covariance matrix 

� Sample Correlation Coefficients

� Testing for the mean vector and the covariance matrix

� Inference problems in multiple samples

X ~ N �� ,� � �=E �X � ,�=var �X �



  

A Simple Example

�Hage: Age of husband
�Hheight: Height of husband
�Wage: Age of wife
�Wheight: Height of wife
�Hagefm: Age of husband at 

first marriage
�Everitt (2005)

Hage Hheight Wage Wheight Hagefm

49 1809 43 1590 25

25 1841 28 1560 19

40 1659 30 1620 38

52 1779 57 1540 26

58 1616 52 1420 30

32 1695 27 1660 23

43 1730 52 1610 33

47 1740 43 1580 26

31 1685 23 1610 26

26 1735 25 1590 23



  

huswif=read.csv("huswif.csv",header

=T)

mean(huswif)

   Hage Hheight    Wage Wheight  

Hagefm

   40.3  1728.9    38.0  1578.0    26.9

sd(huswif)^2

      Hage    Hheight       Wage    

Wheight     Hagefm

 130.23333 4706.98889  164.66667 

4173.33333   29.87778

var(huswif)

cor(huswif)

Hage Hheight Wage Wheight Hagefm

Hage 130.23 -192.19 128.56 -436 28.03

Hheight -192.19 4706.99 25.89 876.44 -229.34

Wage 128.56 25.89 164.67 -456.67 21.67

Wheight -436 876.44 -456.67 4173.33 -8

Hagefm 28.03 -229.34 21.67 -8 29.88

Hage Hheight Wage Wheight Hagefm

Hage 1 -0.25 0.88 -0.59 0.45

Hheight -0.25 1 0.03 0.2 -0.61

Wage 0.88 0.03 1 -0.55 0.31

Wheight -0.59 0.2 -0.55 1 -0.02

Hagefm 0.45 -0.61 0.31 -0.02 1



  

Testing for    with     known
�

�The test statistic is given by 

�Under the null hypothesis, Z2 is 

distributed as chi-square variate 

with p degrees of freedom
� Assume that                     and 

the we are interested in testing 

�Since the calculated chi-square 

value is greater than the 

tabulated, we reject the null 

hypothesis

The R codes which gives us Z2:
library(MASS)

hw=read.csv("Height_Weight.csv",header

=T)

mu0=c(70,170)

sigma = matrix(c(20, 100, 100, 

1000),nrow=2)

n=nrow(hw)

meanx=mean(hw[,2:3])

z2=n*t(meanx-mu0)%*%ginv(sigma)%*

%(meanx-mu0)

 z2

 8.4026

 qchisq(1-0.05,2)

[1] 5.991465

� �

Z
2=n ��x��

0
� ' ��1��x��

0
�

�=[20100 ;1001000 ]

�=�70,170�'

X1, X 2, ... , X n , X1~ N p�� ,��



  

� Consider the “pulmonary” 

data set in the “ICSNP” R 

package
�The variables of interest are 

FVC, FEV, and CC
�The correlation matrix shows 

strong association among the 

variable
cor(pulmonary)

           FVC        FEV         CC

FVC  1.0000000  0.9269397 -0.5339726

FEV  0.9269397  1.0000000 -0.2390159

CC  -0.5339726 -0.2390159  1.0000000

Testing for    with     unknown� �
�The test statistic is given by 

where S  is the sampling 

covariance matrix
�Under the null hypothesis, Z2 is 

distributed as Hotellings' T2 

distribution with p and v = n - 1 

degrees of freedom
�Use the R package “ICSNP”

Z
2=n ��x��

0
�' S

�1��x��
0
�



  

�We are then interested in testing if the mean vector of the three 

variables is (0,0,0)
�The covariance matrix is unknown and hence Hotelling's T2-test 

is appropriate

 HotellingsT2(pulmonary)

        Hotelling's one sample T2-test

data:  pulmonary

T.2 = 3.8231, df1 = 3, df2 = 9, p-value = 0.05123

alternative hypothesis: true location is not equal to c(0,0,0)



  

Multivariate Two-sample Test

Consider

The hypothesis of interest is 

Assume that the samples are independent and 

Define the matrix of sum squares and cross products

Define the pooled population covariance matrix 

H 0 :� 1=� 2    vs   H 1 :� 1�� 2

X11, X12, ... , X1 n
1

, X1 ~ N p��1, �1�

X
21,

X
22,

... , X
2 n

2

, X
2
~ N p��2,

�
2
�

�1=� 2=� ,� unknown

W 1=	
i=1

n
1

� x1i��x1��x1i� �x1�'=n S1

W 1=	
i=1

n2

� x2i� �x2��x2i� �x2�'=n2 S2

S
pl
=

1

n1
n2�2
[�n1�1�S

1

�n2�1�S

2
]



  

�The test statistic is then given by 

�The test statistic T2, under the null hypothesis, is distributed as 

Hotellings T2

p,n1+n2-2

 distribution 

�Some important properties:
� n

1
+ n

2
-2 > p is necessary condition for S

pl

-1 to be 

nonsingular

� T2 is skewed

� For a two-sided alternative, the critical-region is one-tailed

� An easy transformation of T2 gives the F-distribution

T
2=

n1 n2

n1
n2

� x1�x2�' S pl

�1
� x1�x2�



  

Example: Psychological Tests for Males and Females

x
1
: pictorial inconsistencies

x
2
: paper form board

x
3
: tool recognition

x
4
: vocabulary

Variables observed for 32 males and females

We are interested in testing if the mean vectors for males and 

females are equal. 
mfp=read.csv("MF_Psycho_Test_Scores.csv",header=T)

males=mfp[,1:4]; females=mfp[,5:8]

nm=nrow(males);nf=nrow(females)

meanm=mean(males); meanf=mean(females)

sigmam=var(males); sigmaf=var(females)

sigmapl=(1/(nm+nf-2))*((nm-1)*sigmam+(nf-1)*sigmaf)



  

t2=((nm*nf)/(nm+nf))*(t(meanm-meanf)

%*%ginv(sigmapl)%*%(meanm-meanf))

nm;nf;meanm;meanf;sigmapl;t2

[1] 32

[1] 32

    M_y1     M_y2     M_y3     M_y4

15.96875 15.90625 27.18750 22.75000

    F_y1     F_y2     F_y3     F_y4

12.34375 13.90625 16.65625 21.93750

         M_y1      M_y2      M_y3      M_y4

M_y1 7.164315  6.047379  5.693044  4.700605

M_y2 6.047379 15.894153  8.492440  5.855847

M_y3 5.693044  8.492440 29.356351 13.980847

M_y4 4.700605  5.855847 13.980847 22.320565

        [,1]

[1,] 97.6015

Comparing the sample T2 value with  

we reject the null hypothesis



  

Multivariate Paired Two-sample Test



  

Tests on Covariance Matrices

�First calculate the sample variance matrix S
�The test statistic, a modification of the likelihood ratio test, 

where v is the d.f. of S
�For large v, the above test statistic u is approximately distributed 

as chi-square distribution with p(p+1)/2 d.f
�For moderate v, a modification of u is given by

Testing for H 0 :�=� 0

u=v [ ln |�
0
|�ln | S |
tr �S ��1�� p]

u '=[1�
1

6v�1
�2p
1�

2

p
1
�]u



  

Height-Weight Example Continued
�In the height-weight example earlier, we assumed 
�Lets test if thats the real too
hw=read.csv("Height_Weight.csv",header=T)

sigma0 = matrix(c(20, 100, 100, 1000),nrow=2)

sigma = var(hw[,2:3])

v = nrow(hw)-1

p = ncol(hw)-1

u = v*(log(det(sigma0))-log(det(sigma)) + sum(diag(sigma%*%ginv(sigma0)))-p)

u1 = (1- (1/(6*v-1))*(2*p+1 - 2/(p+1)))*u

u,u1,qchisq(1-0.05,p*(p+1)/2)

[1] 11.09374

[1] 10.66832

[1] 7.814728

Since the calculated test statistic value exceeds 7.81, we reject the 

null hypothesis.

�=[20100 ;1001000 ]



  

Multivariate Analysis of Variance

Sample 1 from

N p��1, ��
Sample 2 from

N p��2, ��
... Sample k from

N p��k ,� �

y11 y21 ... yk1

y12 y22 ... yk2

� � �

y1n y2n ... ykn

Total y1. y2. ... yk.

Mean �y1. �y2.
... �yk.



  

The model for each observation is 

The hypothesis of interest is

The “between” and “within” sum of squares matrices, denoted H 

and E respectively, are defined by  

yij=�
� i
 ij

=�i
 ij

H
0
:�

1
=�

2
= ...=�

k

H=n	
i=1

k

� �y i.
� �y..

� � �yi.
� �y..

� '

=	
i=1

k
1

n
y

i.
y

i.
'�

1

kn
y

..
y

..
'

E=	
i=1

k

	
j=1

n

� y
ij
� �yi.

� � y
ij
� �y i.

� '

=	
ij

y
ij

y
ij
'�	

i

1

n
y

i.
y

i.
'



  

Wilks Test Statistic

�v
H
, v

E
 : the rank of H and E

�Wilks Test Statistic: for H
0
 is given by 

�The test procedure is to reject H
0
 if 

�The test statistic can be equivalently obtained in terms of the 

eigen values of the matrix E-1 H:

�The range of Wilks      is between 0 to 1
�Transforms to F-test when either v

H
 = 1 or 2, or when p = 1 or 2

�=
�E�

�E
H�

���� , p , v
E

,v
H

�=�
i=1

s
1

1
� i

�



  

Pillai's Test Procedure

�                       the eigen values of E-1H
�The Pillai test statistic is then given by

�Reject H
0
 if 

�1,�2, ... ,�s

V
�s �= tr [�E
H��1

H ]=	
i=1

s �
i

1
�iV
�s ��V �

�s �



  

Example: Apple of Different Rootstock
�y

1
 = trunk girth at 4 years (mm ×100)

�y
2
 = extension growth at 4 years (m)

�y
3
 = trunk girth at 15 years (mm ×100)

�y
4 
= weight of tree above ground at 15 years (lb ×1000)

The goal is to test if the mean vector of the four variables is same 

across 6 stratas of the experiment. 
# rootstock.dta is available at http://www.stata-press.com/data/r10/rootstock.dta

library(foreign)

rootstock=read.dta("/home/prabhanjan/Desktop/rootstock.dta")

rootstock1=rootstock[rootstock[,1]==1,2:5]

rootstock2=rootstock[rootstock[,1]==2,2:5]

rootstock3=rootstock[rootstock[,1]==3,2:5]

rootstock4=rootstock[rootstock[,1]==4,2:5]

rootstock5=rootstock[rootstock[,1]==5,2:5]

rootstock6=rootstock[rootstock[,1]==6,2:5]

n=8; p=4; vh=5; ve=6*(8-1); k=6



  

ymm=colSums(rootstock[,2:5])

y1m=colSums(rootstock1)

y2m=colSums(rootstock2)

y3m=colSums(rootstock3)

y4m=colSums(rootstock4)

y5m=colSums(rootstock5)

y6m=colSums(rootstock6)

H = ((y1m%*%t(y1m))/n) + ((y2m%*%t(y2m))/n)+((y3m%*%t(y3m))/n)+((y4m%*

%t(y4m))/n)+((y5m%*%t(y5m))/n)+((y6m%*%t(y6m))/n) - (ymm%*%t(ymm))/(k*n)

E = matrix(0,nrow=4, ncol=4);

for(i in 1:nrow(rootstock)) {

a = as.numeric(rootstock[i,2:5])

E = E + a%*%t(a)

}

E = E - (((y1m%*%t(y1m))/n) + ((y2m%*%t(y2m))/n)+((y3m%*%t(y3m))/n)+((y4m

%*%t(y4m))/n)+((y5m%*%t(y5m))/n)+((y6m%*%t(y6m))/n))

E_H=E+H

wlambda=det(E)/(det(E+H))

options(digits=3)

E;H;E_H;wlambda



  

        y1    y2    y3    y4

[1,] 0.320  1.70 0.554 0.217

[2,] 1.697 12.14 4.364 2.110

[3,] 0.554  4.36 4.291 2.482

[4,] 0.217  2.11 2.482 1.723

         y1    y2    y3    y4

[1,] 0.0736 0.537 0.332 0.208

[2,] 0.5374 4.200 2.355 1.637

[3,] 0.3323 2.355 6.114 3.781

[4,] 0.2085 1.637 3.781 2.493

        y1    y2     y3    y4

[1,] 0.394  2.23  0.886 0.426

[2,] 2.234 16.34  6.719 3.747

[3,] 0.886  6.72 10.405 6.263

[4,] 0.426  3.75  6.263 4.216

[1] 0.154



  

# Towards Pillai's test statistic

EH = solve(E) %*% H

eveh=eigen(EH)$values

pillaivs=sum(eveh/(1+eveh))

pillaivs

[1] 1.31

The calculated values of Wilks lambda 0.154 is lesser than the theoretical 

value of 0.455 (corresponding to p = 4, v
H
 = 5, v

E
 = 42). Thus, we reject the 

null hypothesis. Similarly the Pillai's test statistic 1.31 is greater than the 

theoretical value of 0.645 and leads to the same conclusion. 



  

Using “manova” Function in R

attach(rootstock)

rs=rootstock[,1];

rs=factor(rs,ordered=is.ordered(rs)) # Too important a step

root.manova=manova(cbind(y1,y2,y3,y4)~rs)

summary(root.manova, test = "Pillai")

   

summary(root.manova, test = "Wilks")

summary(root.manova, test = "Hotelling")

summary(root.manova, test = "Roy")

Df Pillai approx F num Df den Df    Pr(>F)

rs 5 1.31 4.07 20 168 1.983e-07 ***

Residuals 42

 Df   Wilks  approx F  num Df den Df    Pr(>F)

rs 5 0.15 4.94 20 130.3 7.714e-09 ***

Residuals 42

Df Hotelling-Lawley approx F num Df den Df    Pr(>F)

rs 5 2.92 5.48 20 150 2.568e-10 ***

Residuals 42

 Df    Roy approx F num Df den Df    Pr(>F)

rs 5 1.88 15.76 5 42 1.002e-08 ***

Residuals 42



  

�The test for the independence of the components of a random 

vector is same as testing 
�Under H

0
, the ellipsoid                               becomes 

which is the equation of a sphere, and thus the name sphericity

The log likelihood ratio test is given by 

and the resulting LR test statistic is 

Testing for Sphericity H 0 :�=�2
I

H0 :�=�2
I

�x��� ' �� x�� �=c
2 �x��� ' �x���=�2

c
2

LR=[ �S�

�tr �S �/ p�p ]
n /2

�2 ln �LR�=�n ln [ �S�
�tr S / p � ]=�n ln �u� ,

where u=�LR �2 /n



  

�If     is the i-th eigen value of the correlation matrix S, we can re-

write u in terms of the eigen-values:

�An improvement over u is given by 

�The statistic u', under the null hypothesis, has a chi-square 

distribution with p(p+1)/2 – 1 degrees of freedom.

�i

u=

p
p�

i=1

p

�
i

�	
i=1

p

�i�
p

u '=��v�2p
2
p
1

6p � ln�u �



  

Example: Tests of sphericity
�Response time to 5 probe 

words in a sentence
�Probe words are used to test 

recall of words in various 

linguistic contexts
�The interest is in testing if the 

response times to different 

probe words are independent
�If we fail to reject the 

sphericity hypothesis, we can 

compare the mean response 

times using ANOVA

pw=read.csv("Probe_Word.csv",header=T

)

sigma = var(pw[2:6])

p=ncol(pw)-1; v = nrow(pw)-1

u = p^p*(det(sigma))/

(sum(diag(sigma))^p)

u1 = -(v-(2*p^2+p+2)/(6*p))*log(u)

u;u1

[1] 0.03948874

[1] 26.17709

> qchisq(1-.05,df)

[1] 23.68479

Since the calculated chi-square 

value is greater than 23.68479, 

we reject the sphericity 

hypothesis. 



  

Multivariate Tests of Equality of Covariance 

Matrices

�n
1
, n

2
, ..., n

k
: sizes of the k-samples

�S
i
: the sample covariance matrix of the i-the sample

�Define v
i
 = n

i
 – 1, i=1, 2, ..., k

�We require that v
i
 > p, i=1, 2, ..., k

�Define the pooled sample covariance matrix

�The test statistic is then given by 

H 0 :�1=� 2=...=� k

S
pl
=

	
i=1

k

vi S
i

	
i=1

k

v i

M=
�S1�

v
1
/2
�S2�

v
2
/2

...�Sk�
v

k
/2

�S pl�
	
i=1

k

v
i
/2



  

Box's Chi-square Approximation

�The Box's M-test is the way out
�Define c

1
 as follows

�u = -2 (1 – c
1
) ln(M) is distributed as chi-square with 

(k-1)p(p+1)/2 d.f.
�In the above step

c1=[	i=1

k
1

v
i

�
1

	
i=1

k

vi ] [
2p

2

3p�1

6� p
1��k�1� ]

ln �M �=
1

2
	
i=1

k

v
i
ln ��S i���

1

2 �	i=1

k

v
i� ln�S pl�



  

Box's F- Approximation

�Define the following quantities: 

�If c
2 
> c

1

2, F = -2b
1
 ln(M) is approximately F

a1,a2

�If c
2
 < c

1

2,                         is approximately F
a1,a2

c2=
� p�1�� p
2�

6 �k�1� [	i=1

k
1

v i

2
�

1

�	
i=1

k

v
i�

2 ]
a1=

1

2
�k�1� p� p
1� , a2=

a1
2

�c2�c1

2�

b
1
=

1�c1�a1 /a2

a1

, b
2
=

1�c1
2 /a2

a2

F=
�2a 2 b2 ln � M �

a1�1
2b2 ln �M ��



  

Example: Return to Psychological Tests for Males and 

Females 

We need to test if the covariance matrices for males and females 

are identical or not
# Testing for Equality of Covariance Matrices

mfp=read.csv("MF_Psycho_Test_Scores.csv",header=T)

males=mfp[,1:4]; females=mfp[,5:8]

nm=nrow(males);nf=nrow(females)

p=4; k=2

vm=nm-1; vf=nf-1

meanm=mean(males); meanf=mean(females)

sigmam=var(males); sigmaf=var(females)

sigmapl=(1/(nm+nf-2))*((nm-1)*sigmam+(nf-1)*sigmaf)

ln_M = .5*(vm*log(det(sigmam))+vf*log(det(sigmaf))) -.5*(vm+vf)*log(det(sigmapl))

exact_test = -2*ln_M # the Exact Test

[1] 14.5606

The calculated Exact Test value is less than the critical value 

19.74, and thus we fail to reject the null hypothesis



  

# The Box's chi-square approximation

c1 = (sum(c(1/vm,1/vf))- (1/sum(c(vm,vf))))*((2*p^2+3*p-1)/(6*(p+1)*(k-1)))

u = -2*(1-c1)*ln_M 

qchisq(1-0.05,(k-1)*p*(p+1)/2)

u; qchisq(1-0.05,(k-1)*p*(p+1)/2)

[1] 13.55075

[1] 18.30704

c2 = ((p-1)*(p+2)/(6*(k-1)))*(sum(c(1/vm,1/vf)^2)- (1/(sum(c(vm,vf))^2)))

a1 = (k-1)*p*(p+1)/2; a2 = (a1+2)/(abs(c2-c1^2))

b1 = (1-c1-a1/a2)/a1; b2 = (1-c1+2/a2)/a2

if(c2>c1^2) {Ftest = -2*b1*ln_M} else {Ftest = (2*a2*b2*ln_M)/

(a1*(1+2*b2*ln_M))}

Ftest; qf(1-.05,10,Inf)

[1] 1.354283

[1] 1.830704

Both the Chi-square and F- approximation yield the same 

conclusion as the Exact test. 

Example: Return to Psychological Tests for Males and 

Females 



  

Testing for Independence of Sub-Vectors

�Rencher (261-263)
�Seishu Wine Data

y
1
 :  Taste

y
2
 : Odor

x
1
 : pH

x
2
 : Acidity_1

x
3
 : Acidity_2

x
4
 : Sake_meter

x
5
 : Direct_reducing_sugar

x
6
 : Total_sugar

x
7
 : Alcohol

x
8
 : Formyl_nitrogen

Consider the problem of testing 

for the independence of the sub-

vectors:

Towards this, we need

� y1, y2� , � x1, x2, x3� ,� x4, x5, x6� ,� x7, x8�

S=�
S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S
41

S
42

S
43

S
44

�



  

Theoretically, we need the 

following

and in R we need
sheishu=read.csv("Seishu_wine.csv",head

er=T)

noc=c(2,3,3,2)

nov=10

v=nrow(sheishu)-1

varsheishu=var(sheishu)

s11 = varsheishu[1:2,1:2]

s22 = varsheishu[3:5,3:5]

s33 = varsheishu[6:8,6:8]

s44 = varsheishu[9:10,9:10]

u = det(varsheishu)/

(det(s11)*det(s22)*det(s33)*det(s44))

a2 = nov^2 - sum(noc^2)

a3  = nov^3 - sum(noc^3)

f = a2/2

cc = 1 - (2*a3 + 3*a2)/(12*f*v)

u1 = -v*cc*log(u)

u=
��S��

��S11����S22��...��Skk��

=
��R��

��R
11
����R

22
��...��R

kk
��



  

� The R program returns the following values
u; a2; a3; f; cc; u1

[1] 0.01627025

[1] 74

[1] 930

[1] 37

[1] 0.8383038

[1] 100.1221

qchisq(1-0.001,37)

[1] 69.34645

which is in agreement with the values reported on page 264, 

Rencher (2002)

Since the u1 value exceeds                , we reject the null 

hypothesis of independence of sub-vectors



  

Principal Component Analysis (PCA)

�An effective method for data reduction
�Suppose, we have large number of correlated variables, say q, 

x
1
,x

2
, ..., x

q

�PCA returns a new set of variables y
1
,y

2
, ..., y

q
, with each the new 

variables as a linear combination of the x's
�The y's are in decreasing order of importance in the sense that y

i
 

has more information about x's than y
j
, whenever i > j

�Further, the y's are designed to be uncorrelated
�The central theme being that a few first y

i
's capture a lot of 

information about the x's



  

� PCA may be useful in the following two cases:
�Too many explanatory variables relative to the number of 

observations
�The explanatory variables are highly correlated

� The first principal component y
1
 is a combination of the x's

y
1
 = a

11
x

1
 + a

12
x

2
 + ... + a

1q
x

q
 

A useful restriction on the vector a
1
=(a

11
 , a

12
 , ... , a

1q
 ) is a

1

Ta
1 
=1

� The second principal component y
2
 is a combination of the x's

y
2
 = a

21
x

1
 + a

22
x

2
 + ... + a

2q
x

q
 , with

a
2

Ta
2 
= 1 and a

2

Ta
1 
= 0

� And so on



  

� We need to find a
1
 which will maximize the variance of y

1
 

subject to the constraint a
1

Ta
1 
=1.

� The Lagrangian multiplier helps us out, and leads us to the 

solution that a
1
 is the eigen vector of the sample covariance 

matrix S corresponding to the maximum eigen value. 

Similarly, a
j
 corresponds to the eigen vector of q-j+1 – 

ordered eigen value
� Its further easy to see that the variance of the i-th principal 

component is just the i-th ordered eigen value
� The j-th principal component accounts for a proportion P

j
 of 

the total variation of the x's

P
j
=

� j

tr �S �



  

� Finally, the variation accounted by the first m principal 

components is

Note: If the variables are on different scales, use the correlation 

matrix instead of the Covariance Matrix
� The covariance between variable i and component j is given 

by

� and the correlation is 

� If the components are extracted from the correlation matrix

P
�m �=

	
j=1

m

� j

tr �S �

Cov� xi , y j �=� j a ji

r x i , y j
=

� j a ji

�Var �x i�Var � y j �

=
� j a ji

si��� j�
=

a ji � �� j �

s i

r
x i , y j

=a
ji � �� j

�



  

Loadings

�Loadings are defined as the correlation between the i-th variables 

and the j-th principal component, that is 

�The loadings are easily obtained in almost all the statistical 

software
�We can see its utility as it helps understand the relationships 

between the variables and the principal components. 

Lij=Corr �X i ,PC j�



  

Rescaling Principal Components

a
1
, a

2
, ..., a

q
 : the vectors of the principal components

Define A = [a
1
, a

2
, ..., a

q
]

Define

Then  

A useful rescaling that can be seen from the above expression is 

leading to 

where 

This rescaling plays a very important role in factor analysis.

�=diag {�1,�2, ... ,�q }

S=A � A'

a
i

*=�
i

1/2
a

i

S=A
*� A

*� '
A

*=[ a
1

*
, a

2

*
, ... , a

q

* ]



  

Principal Component Scores

a
1
, a

2
, ..., a

m
 : the vectors of the first m principal components

For an individual i with variable x
i 
= (x

i1
, x

i2
, ..., x

iq
), the principal 

component scores are defined as below:

yi1=a1' x i

y i2=a2' xi

�

y�=am ' x i



  

Example: PCA for Air Pollution Data

� S02: Sulphur dioxide content of air in micrograms per cubic 

meter
� Temp: Average annual temperature in OF
� Manu/: Number of manufacturing enterprises employing 20 or 

more workers
� Pop: Population size (1970 census) in thousands
� Wind: Average annual wind speed in miles per hour
� Precip: Average annual precipitation in inches
� Days: Average number of days with precipitation per year

We believe that, when ever possible, writing programs from the 

scratch gives more insight when entering a new paradigm. Of 

course, once mastered the art the in-built functions can then be 

used quite freely. 



  

� The “pairs” command is a 

very useful too
� Its extensions are just even 

better
library(HSAUR2)

data(USairpollution)

panel.hist <- function(x, ...){

usr <- par("usr"); on.exit(par(usr))

par(usr = c(usr[1:2], 0, 1.5) )

h <- hist(x, plot = FALSE)

breaks <- h$breaks; nB <- length(breaks)

y <- h$counts; y <- y/max(y)

rect(breaks[-nB], 0, breaks[-1], y, 

col="cyan", ...)}

pairs(USairpollution[,-1],cex = 1.5, pch = 

24, bg="light blue", diag.panel = 

panel.hist, cex.labels = 2, 

font.labels=2)

Gives histogram in the diagonal

panel.cor <- function(x, y, digits=2, 

prefix="", cex.cor, ...){

    usr <- par("usr"); on.exit(par(usr))

    par(usr = c(0, 1, 0, 1))

    r <- abs(cor(x, y))

    txt <- format(c(r, 0.123456789), 

digits=digits)[1]

    txt <- paste(prefix, txt, sep="")

    if(missing(cex.cor)) cex.cor <- 

0.8/strwidth(txt)

    text(0.5, 0.5, txt, cex = cex.cor * r) }

pairs(USairpollution[,-1], 

upper.panel=panel.cor)

Gives Correlation Coefficient in 

the Upper Pannel



  



  

� From the above pictures its clear that the variables are on 

different scales
� Outliers are clearly present
� We need to use Correlation Matrix and not the Covariance 

Matrix for PCA



  

 usair.pc=princomp(USairpollution[,-1],cor=T)

summary(usair.pc)

Importance of components:

                          Comp.1    Comp.2    Comp.3    Comp.4     Comp.5

Standard deviation     1.4819456 1.2247218 1.1809526 0.8719099 0.33848287

Proportion of Variance 0.3660271 0.2499906 0.2324415 0.1267045 

0.01909511

Cumulative Proportion  0.3660271 0.6160177 0.8484592 0.9751637 

0.99425879

                            Comp.6

Standard deviation     0.185599752

Proportion of Variance 0.005741211

Cumulative Proportion  1.000000000



  

Plot to Check of the Principal Components 

are Orthogonal or Not



  

Biplot



  

Discriminant Analysis
Discriminant functions are linear combinations of variables that 

best separate groups. (Rencher, 2002)

Covariance matrix is assumed to be same

Consider linear combinations

Define 

The problem of DA is to find a which maximizes the standardized 

difference 

X11, X12, ... , X1n
1

, X1~ N p ��1, ��

X
21,

X
22,

... , X
2 n

2

, X
2
~ N p��2,

��

z1i=a ' x1i=a1 x1i1
a2 x1i2
...
ap x1ip , i=1,2, ... , n1

z2i=a ' x1i=a1 x2i1
a2 x2i2
...
ap x2ip , i=1,2,... , n2

�z1=	
i=1

n
1

z1i /n1=a ' �x1 ; �z2=	
i=1

n
2

z2i /n2=a ' �x2

� �z1� �z2�
2

sz

2
=

[ a ' � �x1� �x2� ]
2

a' S pl a



  

The solution is given by

# Program for Discriminant Analysis

kj=read.csv("kj_69.csv",header=T)

attach(kj)

kjm=colMeans(kj,na.rm=T)

n1=5; n2=7;

m1=colMeans(cbind(t1y1,t1y2),na.rm=T)

m2=colMeans(cbind(t2y1,t2y2),na.rm=T)

sigma1=var(cbind(t1y1,t1y2),na.rm=T)

sigma2=var(cbind(t2y1,t2y2),na.rm=T)

sigmapl=(1/(n1+n2-2))*((n1-1)*sigma1+(n2-1)*sigma2)

discriminant=solve(sigmapl)%*%(m1-m2)

          [,1]

t1y1 -1.633377

t1y2  1.819779

a=S
pl

�1� �x1
� �x2

�



  

Discriminant Analysis with k- Groups
�We won't go in the theory of discriminant analysis for k-groups
�Simply illustrate with “IRIS” data set

library(MASS)

irlda=lda(iris[,5]~iris[,1]+iris[,2]+iris[,3]+iris[,4])

ir_pred=predict(irlda,iris[,1:4])$class

table(iris[,5],ir_pred)

            ir_pred

             setosa versicolor virginica

  setosa         50          0         0

  versicolor      0         48         2

  virginica       0          1        49

sum(diag(table(iris[,5],ir_pred)))/150

[1] 0.98


